Abstract

An analytical study has been carried out on the InAs/GaAs p+–i–n+ quantum dot solar cell, taking into consideration the contributions of each region of the cell to the total photocurrent. The expressions for the excess minority carrier concentration and photocurrent from the front and the rear regions of the device have been obtained and their variations with different device parameters have been studied. Also, based on the investigations reported by some researchers earlier, the photocurrent contribution from the intrinsic region of the solar has been studied, taking into account the quantum dot ensemble absorption coefficient, which depends significantly on the quantum dot size and size dispersion. It is observed that all the three regions of the cell contribute to the overall internal quantum efficiency (IQE) of the cell. The contribution of each region of the solar cell to the total IQE has been shown graphically. From these studies it is observed that the incorporation of the quantum dots in the intrinsic region enhance the photocurrent density and hence the IQE of such solar cell, as it absorbs low energy photons, which are beyond the absorption range of GaAs. Finally, the fill factor of the solar cell has been calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call