Abstract

The structure of triple flame propagation in combustion systems, containing uniformly distributed volatile fuel droplet was analyzed. The analysis was established for a one-step irreversible reaction with an asymptotic limit, where the value of the Zeldovich Number is large. Here, using unit Lewis number, the analytical results for the triple flame temperature were obtained considering two sections. In the first section, a non-vaporizing fuel stream was studied and in the second section, a volatile droplet fuel stream was taken into account. It is presumed that the fuel droplets vaporize to yield a gaseous fuel of known chemical structure, which is subsequently oxidized in the gaseous phase. Here two different cases are studied. In the first case, only the velocity parallel to the reactant flow was considered; while for the latter one, the vertical velocity was considered in addition. The energy equations were solved and the temperature field equations are presented. The results are first presented for a non-vaporizing fuel and compared to the experiment results. In addition, some other results of the temperature field for a vaporizing fuel stream are demonstrated within the comparison between the abovementioned cases which revealed the effect of the considering the vertical velocity component on the flame temperature field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call