Abstract
ABSTRACTThis article proposes a discriminant function and an algorithm to analyze the data addressing the situation, where the data are positively skewed. The performance of the suggested algorithm based on the suggested discriminant function (LNDF) has been compared with the conventional linear discriminant function (LDF) and quadratic discriminant function (QDF) as well as with the nonparametric support vector machine (SVM) and the Random Forests (RFs) classifiers, using real and simulated datasets. A maximum reduction of approximately 81% in the error rates as compared to QDF for ten-variate data was noted. The overall results are indicative of better performance of the proposed discriminant function under certain circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.