Abstract

In this paper we present an analytical study of dynamic membership (aka churn) in structured peer-to-peer networks. We use a fluid model approach to describe steady-state or transient phenomena, and apply it to the Chord system. For any rate of churn and stabilization rates, and any system size, we accurately account for the functional form of the probability of network disconnection as well as the fraction of failed or incorrect successor and finger pointers. We show how we can use these quantities to predict both the performance and consistency of lookups under churn. All theoretical predictions match simulation results. The analysis includes both features that are generic to structured overlays deploying a ring as well as Chord-specific details, and opens the door to a systematic comparative analysis of, at least, ring-based structured overlay systems under churn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.