Abstract

The multicomponent pharmacokinetic study of herbal medicine is a great challenge due to the low plasma concentrations, large range of concentration scales, lack of authentic standards and uncertain interactions of the components. The aim of this work was to explore the in vivo pharmacokinetics of herbal medicine independently of authentic standards using an integrated analytical strategy. First, ion pairs of multiple components were tuned and selected, and then major parameters were optimized for derivative multiple reaction monitoring (DeMRM) by LC–MS/MS, which was combined with characterization of the chemical profiles of the herbal medicine by LC-QqTOF/MS. Second, different concentrations of herbal extracts were employed instead of authentic standards to construct calibration curves for the semiquantitative determination of multiple components in plasma. Taking Gelsemium elegans as an example, in addition to the fully validated and sufficient methodological results, a total of 27 alkaloid components, major bioactive constituents of Gelsemium elegans, were simultaneously monitored in pig plasma. The concentration-time profiles and pharmacokinetic properties of these 27 components were characterized. The absolute quantification of three components was compared with the results obtained using authentic standards, and the method showed very similar analytical characteristics, such as linearity, precision, accuracy, and the values of the pharmacokinetic parameters Tmax, Vd, Cl and MRT. This analytical strategy was found to be capable of assessing herbal pharmacokinetics independently of specific authentic compounds for each component. This study was the first attempt to systematically reveal the in vivo pharmacokinetics of Gelsemium elegans. This strategy and methodology will find widespread use in the quantitative pharmacokinetic analysis of multiple components independently of standards for herbal medicine, among other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.