Abstract

A novel method combined signal flow graph of a single heat exchanger with the transfer function of streams is developed for the dynamic behaviors of heat exchanger networks problems, which are determinate factors of the process control and operation optimization in the processing industries. The transfer functions between any two nodes of heat exchanger networks including the inlet and the outlet are obtained based on the signal flow graph of the networks by block-diagram reduction, Mason's rule and the seeking-up method. The developed method is solved by a numerical inverse Laplace transform and the analytical solution to the dynamic behavior of heat exchanger networks is presented in the time domain. The numerical results demonstrate that the presented method is more efficient and more accurate for the dynamic behaviors of heat exchanger networks problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.