Abstract

In this paper, considering a more realistic model for the carbon nanotube (CNT) conveying viscous fluid which is embedded in a visco-elastic medium, the effect of viscosity of the medium surrounding the CNT has been investigated. By taking into account the influence of the fluid viscosity and using the Navier-Stokes equations, the governing equation of motion has been derived and a new analytical technique based on the power series is presented for its vibration analysis. The frequency equation of the system is obtained by applying the boundary conditions. The influence of the medium parameters and the fluid viscosity on the natural frequencies of the CNT has been studied. The results show that the medium damping has a marked effect on the natural frequencies and the critical fluid velocity. Furthermore, by increasing the fluid viscosity, the natural frequencies and the critical fluid velocity increase. There is a good agreement between the results obtained through the proposed method and the data reported in the literature. The two main advantages of the proposed method are the applicability of the method to all kinds of the boundary conditions and its rapid convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.