Abstract

A linear function is obtained by transforming the shallow-water wave equation from rectangular coordinates to elliptic coordinates, which gives the ordinary and the modified Mathieu equations respectively to describe oscillations in the polar and the radial directions by applying the method of separation of variables. Oscillations within an elliptical harbor can be described by appropriate products of radial and angular Mathieu functions. Eigenvalues are obtained by implementing the no-flux condition at the boundary. The oscillation is a two dimension distribution, and there are n nodes running in the polar direction, which is the same as the order of the angular Mathieu function; the nodes in radial direction are related with the boundary condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.