Abstract
In the present study, various Higher-order Shear Deformation beam Theories (HSDTs) are applied in order to achieve the exact analytical solution to bending, buckling, and free vibration of Functionally Graded (FG) nanobeam lying on the Winkler and Pasternak elastic foundations. HSDTs are those in which the eff ect of transverse shear strain is included. The displacement field of these theories involves a quadratic variationof transverse shear strains and stresses; hence, this hypothesis leads to the diminishing of transverse shear stresses at the top and bottom surfaces of a beam. Thus, necessarily, there is no need to use a shear correction factor in the HSDTs. Nanobeam has been made of FG materials in which the properties of these materials are changed through the thickness direction of nanobeam according to the power-law distribution. Hamilton's principle is used to derive the equation of motions and the related boundary conditions of simplysupported nanobeam. The present study shows that the stability and vibration behaviors of FG nanobeam are extremely dependent on the Winkler and Pasternak elastic foundation, gradient index, aspect ratio, and nonlocal parameter. The obtained results of the present study might be useful in the advanced fi eld of micro/nano electromechanical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.