Abstract
Placement is the process of determining the exact locations of circuit elements within a chip. It is a crucial step in very large scale integration (VLSI) physical design, because it affects routability, performance, and power consumption of a design. In this paper, we develop a new analytical placer to solve the VLSI standard cell placement problem. The placer consists of two phases, multilevel global placement (GP) and detailed cell placement (DP). In the stage of GP, during the clustering stage, we use a nonlinear programming technique and a best-choice clustering algorithm to take a global view of the whole netlist and placement information, and then use an iterative local refinement technique during the declustering stage to further distribute the cells and reduce the wirelength. In the stage of DP, we develop a fast legalization algorithm to make the solution by global placement legal and use a cell order polishing to improve the legal solution. The proposed algorithm is tested on the IBM standard cell benchmark circuits and Peko suites. Experimental results show that our placer obtains high-quality results in a reasonable running time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.