Abstract

In this paper, the authors develop a general analytical model to predict the amount of surface that is flooded during condensation on a horizontal, integral-fin tube. The model is based on capillary equations that predict the amount of liquid rise on a vertical u-shaped channel. The space between adjacent integral fins forms such a channel. The authors compare the model to test data taken during condensation on three integral-fin tubes (748-to-1378 fpm) and a range of fluid properties. The analytical model predicts the amount of liquid retention on a horizontal, integral-fin tube within ± 10 percent over most of the data. The analysis is performed for the case of negligible vapor shear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.