Abstract
In this study, we present an analytical modeling framework for wind turbine wakes under an arbitrary pressure gradient imposed by the base flow. The model is based on the conservation of the streamwise momentum and self-similarity of the wake velocity deficit. It builds on the model proposed by Shamsoddin and Porté-Agel, which only accounted for the imposed pressure gradient in the far wake. The effect of the imposed pressure gradient on the near wake velocity is estimated by using Bernoulli’s equation. Using the estimated near wake velocity as the starting point, the model then solves an ordinary differential equation to compute the streamwise evolution of the maximum velocity deficit in the turbine far wake. The model is validated against experimental data of wind turbine wakes on escarpments of varying geometries. In addition, a comparison is performed with a pressure gradient model which only accounts for the imposed pressure gradient in the far wake, and with a model that does not account for any imposed pressure gradient. The new model is observed to agree well with the experimental data, and it outperforms the other two models tested in the study for all escarpment cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.