Abstract
A set of equations is derived describing the dynamic response of cylindrical liquid storage tanks under horizontal ground excitation. The structure consists of a flexible cylindrical tank with a roof and a bottom plate and rests on a flexible ground through a rigid foundation. Portion of the base of the tank may separate from and lift off the foundation during ground motion. The solution of the hydrodynamic problem is first found in closed form. Then, Hamilton’s principle is applied and the equations governing the behavior of the coupled fluid/structure/ground system are derived. During this procedure, the base uplifting is modeled by an appropriate rotational nonlinear spring placed between the base of the tank and the foundation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.