Abstract

The supergradient winds that may have severe implications on the wind design of high-rise buildings have been commonly observed in the hurricane boundary layer. However, the widely-used log-law or power-law wind profile excludes the supergradient-wind region in which the tangential winds are larger than the gradient winds. Although high-fidelity, nonlinear hurricane wind models may well capture the supergradient winds, high computational demand is needed for each simulation. Recently developed linear, height-resolving hurricane wind models, while can efficiently consider the existence of supergradient winds, significantly underestimate them due essentially to the ignorance of vertical advection term in the governing equations. A number of studies have actually demonstrated that the vertical advection is a major contributor to the transfer of horizontal momentum to the supergradient region. To this end, a refined analytical model that simultaneously integrates the horizontal advection, vertical advection and vertical diffusion terms into the governing equations is developed for accurately and efficiently estimating the hurricane supergradient winds. The important role of the vertical wind speed in determining the horizontal wind speeds (including supergradient winds) in the hurricane boundary layer is highlighted. Since the horizontal and vertical wind components are mutually dependent, the iteration technique is utilized to solve the proposed analytical model. The consideration of the vertical advection results in intensified supergradient winds that are consistent with the observations. Furthermore, a strong outflow region in the vicinity of the radius of maximum winds due to the supergradient winds can be obtained. Due to its simplicity and computational efficiency, the developed analytical model can be easily implemented in the Monte Carlo simulations for the rapid assessment of hurricane wind risk to coastal structures, especially to high-rise buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.