Abstract

In this paper, an analytical model has been performed to scrutinize the structure of the flame propagation in counterflow configuration where the mixture of solid fuel particles and air are injected as opposed streams. The structure of counterflow premixed flame in a symmetric configuration, containing uniformly distributed volatile fuel particles, with nonunity Lewis number is examined with considering radiative heat loss effect in counterflow configuration with strain rate issue. The flame structure governing equations, required boundary conditions, and matching conditions are applied for each zone in order to solve the differential equations. The flame position is determined, mass fraction of solid particles and gaseous phases, effect of Lewis number change on the gaseous and solid fuel mass fraction distribution, and the role of strain rate, and different particle diameters are investigated with and without considering thermal radiation effect. In addition, the effect of equivalence ratio on the flame temperature, mixture temperate and non-dimensional flame position is investigated in counterflow flame propagation. According to our finding, the burning velocity of counterflow flame remarkably increases as a function of vaporization Damköhler number as well as non-dimensional vaporization temperature with considering thermal radiation effect in counterflow domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.