Abstract
The shear strength of geogrid-reinforced ballast is often dependent on the aperture size of geogrids and the nominal size of ballast. This paper presents a theoretical analysis based on probabilistic mechanics of how aperture size affects the interaction between particles and geogrid. Unlike past literature, in this study, the properties of the particle size distribution is analysed using a Weibull distribution. The probability of grain interlock is proposed to describe the interactive mechanisms between particles and geogrids based on the relative particle size, which is defined as the ratio of particle size to aperture size. The mathematical model is calibrated by a set of large-scale direct shear tests with almost single-size (highly uniform) ballast aggregates, and then validated by independent set of data taken from both literature and current study. The study concludes that more uniform particle size distribution increases the probability of grain interlock at the optimum aperture size but decreases it at non-optimum aperture sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.