Abstract

A one-dimensional analytical model is proposed to analyze contaminant diffusion through a composite geomembrane cut-off wall (CGCW) composed of a geomembrane (GMB) and a bentonite cut-off wall (BCW). The model considers degradation process of contaminant and time-dependent inlet boundary condition which are common in engineering practices. Moreover, two limiting scenarios of the exit boundary condition (EBC) of CGCW for field conditions are taken into account, including the flushing and non-advective semi-infinite aquifer EBCs. The influence of boundary conditions and performance of CGCW are comprehensively investigated. The results show that the upper and lower limits of the mass flux of the exit face of CGCW can be obtained by the models with flushing EBC and the model with non-advective semi-infinite aquifer EBC, respectively. In addition, degradation has substantial influence on the contaminant migration, and smaller half-life in BCW results in smaller contaminant leakage. The performance of CGCW can be improved by embedding GMB at a proper location which is related to the type of contaminant and EBC. Furthermore, thickening HDPE GMB or adopting a coextruded EVOH GMB is efficient to improve the performance of CGCW. The present model can be used as an applicable tool for rational design of CGCW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call