Abstract

Intensive shipping activity in port areas is considered one of the leading problems in the maritime sector, which has a negative effect on climate change and local air quality. The compilation of detailed inventories of combustion gases released by ships should therefore provide a more accurate overview of emission levels, which can serve as a basis for analysing impacts on the port community and lead to the establishment of better environmental measures. Thus, the aim of this study was to develop an adaptable and relevant analytical model capable of integrating a comprehensive methodology with large databases of ship movements and technical details to provide clear ship-related emission estimates in large port areas. Considering the lack of research in Croatia that includes the mentioned approach and the insufficient monitoring of air pollutants in ports, the model was used to produce an initial overall emissions inventory for the Port of Split, the busiest passenger port in Croatia. In the model, bottom-up logic with an energy-based method was applied to detailed technical and near-real-time shipping data from AIS, creating the first high-density spatial and temporal overview of shipping emissions in the City port basin. The results showed strong seasonal fluctuations and large discrepancies in the quantities emitted between different ship types and operating modes. The analysis therefore raised the question of the need for the future development and implementation of a scalable system that would provide a more transparent and efficient overview of the important characteristics of air pollution from ships and port areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call