Abstract

AbstractThis paper describes the development of a coupled rotor-flexible fuselage model which is suitable for simulating vibration reduction based on the active control of structural response (ACSR) approach. The rotor is an Nb-bladed aeroelastic model, with coupled flap-lag-torsional dynamics for each blade. Moderate blade deflections are included, together with complete coupling between rotor and fuselage dynamics. This aeroelastic response model is combined with a control algorithm based on an internal model principle. The control scheme effectively reduces vibrations to 0·05g levels or lower, using reasonable actuator forces. The baseline vibration levels in the fuselage are relatively high. This is due to the lack of damping modelling in the fuselage. With the actuators engaged, the hub loads remain virtually unchanged and therefore this control approach has no influence on vehicle airworthiness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.