Abstract
The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as open finite queueing networks with a multi-objective set of performance measures. The optimal routing problem was determined so that the number of evacuation passengers was maximized while the service level was higher than a certain criterion. An analytical technique for modelling open finite queueing networks, called the iteration generalized expansion method (IGEM), was utilized to calculate the desired outputs. A differential evolution algorithm was presented for determining the optimal routes. As demonstrated, the design methodology which combines the optimization and analytical queueing network models provides a very effective procedure for simultaneously determining the service level and the maximum number of evacuation passengers in the best evacuation routes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.