Abstract
A universal design method for pressurized cylindrical shells with attached nozzles subjected to external forces (moments) and internal pressure are presented, based on theoretical stress analysis. The applicable ranges of the presented design methods are extended to ρ0=d/D≤0.9 and λ=d/(DT)1/2≤12. As a first step of design, the required reinforcement thicknesses, both of the main shell and nozzle due to internal pressure, can be determined by the presented theoretical solutions. When the junction is subjected to external nozzle loads, the next step is to determine the absolute values of dimensionless longitudinal and circumferential, normal and shear, membrane and bending stresses in the shell at the junction subjected to internal pressure, and six external nozzle load components by reading out from a number of sets of curves calculated by the present theoretical method. Then the stress components at eight examination points are calculated and superimposed for the combined loads. Finally, the membrane and primary plus secondary stress intensities can be calculated, respectively, to meet the design criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.