Abstract

An analytical procedure for the static shape control of flexible space structures subjected to thermal distortions is developed which is based on prescribing temperatures in control elements having much higher coefficients of thermal expansion than the main structure. The temperatures at the control elements are defined so as to minimize the overall thermal distortion of the structure from its ideal shape, and a matrix equation is obtained which can be solved for the set of optimum control temperatures. A formulation of the procedure for continuous structures governed by differential equations and a formulation for discrete (finite element modeled) structures governed by matrix equations are presented. The equations from the continuous formulation are employed for the shape control of a simple beam distorted by nonuniform heating, and the discrete formulation is applied in a general purpose finite-element structural analysis computer program for the shape control of a 750 m radiometer antenna reflector dish subjected to orbital heating. A reduction in thermal distortion by a factor of nearly 50 was obtained with the use of only seven control elements. Results for four different sets of control locations for the antenna are presented in which reductions in distortion of up to a factor of four were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call