Abstract

Once the battery becomes fully discharged, a battery-powered portable electronic system goes off-line. Therefore, it is important to take the battery behavior into account. A system designer needs an adequate high-level model in order to make battery-aware decisions that target maximization of the system's lifetime on-line. We propose such a model: it allows a designer to predict the battery time-to-failure for a given load and provides a cost metric for lifetime optimization algorithms. Our model also allows for a tradeoff between the accuracy and the amount of computation performed. The quality of the proposed model is evaluated using a detailed low-level simulation of a lithium-ion electrochemical cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.