Abstract

Container transport, an integral part of intercontinental trade, has steadily increased over the past few decades. The productivity of such a system, in part, hinges on the efficient allocation of terminal resources such that the container transit time is minimized. This study provides an analytical framework, which entails efficient scheduling of quay and yard cranes, to minimize the time spent by containers at a terminal. A mixed-integer programming model is developed to capture the two-stage multi-processor characteristic of the problem, where each crane has specific time window availability. A genetic algorithm equipped with a novel decoding procedure is developed. The mixed-integer model is tested on a number of problem instances of varying sizes to gain managerial insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.