Abstract

Predicting the flux density distribution on the receiver surface is of significance for designing and deploying a central receiver system. In this paper, an analytical model with a closed-form expression is presented to accurately describe the flux density distribution that a flat heliostat reflects on the receiver plane. The flux spot is modeled as a two dimensional convolution between a uniform light flux density distribution over the heliostat effective reflection surface and a two dimensional quasi-Cauchy kernel. The convolution is solved analytically as a closed-form expression. The proposed model takes into account the sunlight direction, sun shape, heliostat position, size, orientation, slope error, and shadowing and blocking effects, etc. Extensive experiments and comparisons were conducted, and it shows that the proposed model is more accurate than the prevalent elliptical Gaussian model, in terms of total power and flux density distribution. Due to its closed-form expression, the proposed model can also be efficiently evaluated on a contemporary graphics processing unit to predict the flux spot of a heliostat within 2.8 ms. Thus this model has promising potential in the practical optimization applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.