Abstract

We have developed an analytical model that describes the steady-state thermal behavior of a 1-D electrothermal bimorph MEMS micromirror. The steady-state 1-D heat transport equation is used to solve for the temperature distribution of the device upon actuation. Three models are developed using different thermal conditions on the device. The models consider heat dissipation from conduction and convection and the temperature dependence of the actuator electrical resistor. The temperature distribution equation of each model is analyzed to find critical thermal parameters such as the position of maximum temperature, maximum temperature, average temperature, and equivalent thermal resistance. The simplest model, called the Case 1 model, is used to develop an electrothermal lumped element model that uses a single thermal power source. In the Case 1 model, it is shown that a parameter called the “balancing factor” predicts where the maximum temperature is located, the distribution of power flow, and the division of thermal resistances. The analytical models are compared to FEM simulations and agree within 20% for all of the actuation ranges and thermal conditions tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.