Abstract

Usually, the design of the electrodes of fast-transverse-flow CO 2 lasers relies more on experimental data than on theoretical analysis. Traditional systems sustain a stable, high-power discharge but the current distribution generates a peaked, non-uniform small-signal-gain pattern. We present a theoretical model suitable for the design of electrodes that achieves a quasi uniform gain distribution. The analysis, based on a two-temperature model and the gas-transport equations, computes the electron density that supports a flat gain pattern. Combining the desired electron density with the electron-balance equations, the model determines the required electric field. The results were used to design a new set of electrodes for a home-made fast transverse flow CO 2 laser. A stable, large volume discharge ( 4 × 8 × 90 cm 3 ) with very good uniformity was obtained. The resulting gain distribution was registered in a bi-dimensional map. The peak gain rose from 1.2 m - 1 , attained with the old electrode set, to 1.6 m - 1 with the new one and the gain showed a homogeneous profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.