Abstract

A simple analytical procedure for the detection of self-aggregated heat-denatured whey proteins (HDWP) in model cheeses was developed. The principle of the approach lies in the solubilization of the cheese matrix by a sodium citrate solution (0.2 M, pH 7.0) resulting in the dissociation of the casein micelles and the insolubilization of HDWP aggregates, which are collected in the pellet after a centrifugation step. The reliability of the procedure was tested in lab-scale cheeses from peroxidase-positive pasteurized milk with different protein-based ingredients (microparticulated whey protein concentrate, milk protein concentrate, whey protein isolate and Ricotta cheese) at concentrations ranging from 0.2 to 1.2% protein (w/v on cheese milk). A linear relationship between the amount of the HDWP added to cheese milk and that recovered from model cheeses was observed. Heat-damage indicators, furosine and lysinoalanine, showed levels in the experimental cheese samples not related with added HDWP, but represented a source of information on the ingredients other than liquid milk. Overall, in the model cheeses, the proposed method was an easy-to-apply and reliable tool for the evaluation of the presence of HDWP-based products. Further investigation is required for the application to real cheeses and for the evaluation of possible interferences from proteolysis during ripening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.