Abstract

This paper seeks to investigate an approach of photonic reservoir computing for optical speech recognition on an examination isolated digit recognition task. An analytical approach in photonic reservoir computing is further drawn on to decrease time consumption, compared to numerical methods; which is very important in processing large signals such as speech recognition. It is also observed that adjusting reservoir parameters along with a good nonlinear mapping of the input signal into the reservoir, analytical approach, would boost recognition accuracy performance. Perfect recognition accuracy (i.e. 100%) can be achieved for noiseless speech signals. For noisy signals with 0–10db of signal to noise ratios, however, the accuracy ranges observed varied between 92% and 98%. In fact, photonic reservoir application demonstrated 9–18% improvement compared to classical reservoir networks with hyperbolic tangent nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.