Abstract

An analytical and numerical study was conducted for estimation of the effective thermal conductivities of curved metal frame core structures, which can replace metal foams, in views of their advantages over the metal foams for both load bearing and heat dissipation. The trajectory of the frame ligament and its cross-sectional area were allowed to vary arbitrarily in the three-dimensional (3D) space. The analytical formula obtained by extending the formula previously proposed by Bai et al. (2017, “A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures,” ASME J. Heat Transfer, 140(5), p. 052001) was examined by comparing it with the numerical results directly obtained from full 3D numerical computations. An air layer partially filled with a collection of coiled circular rods was treated both analytically and numerically. Furthermore, the effect of lattice nodes on the effective thermal conductivity was investigated by introducing an analytical model with the lattice ligaments merging together at one nodal point. The analytical expressions thus derived for the lattice structures with nodes were applied to tetrahedral structure and octet-truss structure to find their effective thermal conductivities, which are found to agree closely with the 3D numerical results. Thus, the present analytical expressions can be used to customize the structure to meet its desired thermal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.