Abstract

Compared with other physiotherapy devices, epidermal electronic systems (EES) used in medical applications such as hyperthermia have obvious advantages of conformal attachment, lightness and high efficiency. The stretchable flexible electrode is an indispensable component. The structurally designed flexible inorganic stretchable electrode has the advantage of stable electrical properties under tensile deformation and has received enough attention. However, the space between the patterned electrodes introduced to ensure the tensile properties will inevitably lead to the uneven temperature distribution of the thermotherapy electrodes and degrade the effect of thermotherapy. It is of great practical value to study the temperature uniformity of the stretchable patterned electrode. In order to improve the uniformity of temperature distribution in the heat transfer system with stretchable electrodes, a temperature distribution manipulation strategy for orthotropic substrates is proposed in this paper. A theoretical model of the orthotropic heat transfer system based on the horseshoe-shaped mesh electrode is established. Combined with finite element analysis, the effect of the orthotropic substrate on the uniformity of temperature distribution in three types of heat source heat transfer systems is studied based on this model. The influence of the thermal conductivity ratio in different directions on the temperature distribution is studied parametrically, which will help to guide the design and fabrication of the stretchable electrode that can produce a uniform temperature distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.