Abstract

Understanding the formation and evolution of large-scale structure is a central problem in cosmology and enables precise tests of General Relativity on cosmological scales and constraints on dark energy. An essential ingredient is an accurate description of the pairwise velocities of biased tracers of the matter field. In this paper we compute the first and second moments of the pairwise velocity distribution by extending the Convolution Lagrangian Perturbation theory (CLPT) formalism of Carlson et al. (2012). Our predictions outperform standard perturbation theory calculations in many cases when compared to statistics measured in N-body simulations. We combine the CLPT predictions of real-space clustering and velocity statistics in the Gaussian streaming model of Reid & White (2011) to obtain predictions for the monopole and quadrupole correlation functions accurate to 2 and 4 per cent respectively down to <25Mpc/h for halos hosting the massive galaxies observed by SDSS-III BOSS. We also discuss contours of the 2D correlation function and clustering "wedges". We generalize the scheme to cross-correlation functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.