Abstract

This article introduces new types of rational approximations of the inverse involute function, widely used in gear engineering, allowing the processing of this function with a very low error. This approximated function is appropriate for engineering applications, with a much reduced number of operations than previous formulae in the existing literature, and a very efficient computation. The proposed expressions avoid the use of iterative methods. The theoretical foundations of the approximation theory of rational functions, the Chebyshev and Jacobi polynomials that allow these approximations to be obtained, are presented in this work, and an adaptation of the Remez algorithm is also provided, which gets a null error at the origin. This way, approximations in ranges or degrees different from those presented here can be obtained. A rational approximation of the direct involute function is computed, which avoids the computation of the tangent function. Finally, the direct polar equation of the circle involute curve is approximated with some application examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.