Abstract

Abstract Mean motion commensurabilities in multi-planet systems are an expected outcome of protoplanetary disk-driven migration, and their relative dearth in the observational data presents an important challenge to current models of planet formation and dynamical evolution. One natural mechanism that can lead to the dissolution of commensurabilities is stochastic orbital forcing, induced by turbulent density fluctuations within the nebula. While this process is qualitatively promising, the conditions under which mean motion resonances can be broken are not well understood. In this work, we derive a simple analytic criterion that elucidates the relationship among the physical parameters of the system, and find the conditions necessary to drive planets out of resonance. Subsequently, we confirm our findings with numerical integrations carried out in the perturbative regime, as well as direct N-body simulations. Our calculations suggest that turbulent resonance disruption depends most sensitively on the planet–star mass ratio. Specifically, for a disk with properties comparable to the early solar nebula with , only planet pairs with cumulative mass ratios smaller than are susceptible to breaking resonance at semimajor axis of order . Although turbulence can sometimes compromise resonant pairs, an additional mechanism (such as suppression of resonance capture probability through disk eccentricity) is required to adequately explain the largely non-resonant orbital architectures of extrasolar planetary systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.