Abstract

We analyze the problem of finding a point strictly interior to a bounded, convex, and fully dimensional set from a finite dimensional Hilbert space. We generalize the results obtained for the linear programming (LP), semidefinite programming (SDP), and second-order core programming (SOCP) cases. The cuts added by our algorithm are central and conic. In our analysis, we find an upper bound for the number of Newton steps required to compute an approximate analytic center. Also, we provide an upper bound for the total number of cuts added to solve the problem. This bound depends on the quality of the cuts, the dimensionality of the problem and the thickness of the set we are considering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.