Abstract

Radiative transfer modeling of the bidirectional reflectance distribution function (BRDF) of leaf canopies is a powerful tool to relate multiangle remotely sensed data to biophysical parameters of the leaf canopy and to retrieve such parameters from multiangle imagery. However, the approximate approaches for multiple scattering that are used in the inversion of existing models are quite limited, and the sky radiance frequently is simply treated as isotropic. This paper presents an analytical model based on a rigorous canopy radiative transfer equation in which the multiple-scattering component is approximated by asymptotic theory and the single-scattering calculation, which requires numerical integration to properly accommodate the hotspot effect, is also simplified. Because the model is sensitive to angular variation in sky radiance, the authors provide an accompanying new formulation for directional radiance in which the unscattered solar radiance and single-scattering radiance are calculated exactly, and multiple-scattering is approximated by the well-known delta two-stream approach. A series of validations against exact calculations indicates that both models are quite accurate, especially when the viewing angle is smaller than 55 degrees . The Powell algorithm is then used to retrieve biophysical parameters from multiangle observations based on both the canopy and the sky radiance distribution models. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.