Abstract

We consider the Bayesian detection statistic for a targeted search for continuous gravitational waves, known as the -statistic. This is a Bayes factor between signal and noise hypotheses, produced by marginalizing over the four amplitude parameters of the signal. We show that by Taylor-expanding to first order in certain averaged combinations of antenna patterns (elements of the parameter space metric), the marginalization integral can be performed analytically, producing a closed-form approximation in terms of confluent hypergeometric functions. We demonstrate using Monte Carlo simulations that this approximation is as powerful as the full -statistic, and outperforms the traditional maximum-likelihood -statistic, for several observing scenarios which involve an average over sidereal times. We also show that the approximation does not perform well for a near-instantaneous observation, so the approximation is suited to continuous wave observations rather than transient modelled signals such as compact binary inspiral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.