Abstract

During the fast-filling of a high-pressure hydrogen tank, the temperature of hydrogen would rise significantly and may lead to failure of the tank. In addition, the temperature rise also reduces hydrogen density in the tank, which causes mass decrement into the tank. Therefore, it is of practical significance to study the temperature rise and the amount of charging of hydrogen for hydrogen safety. In this paper, the change of hydrogen temperature in the tank according to the pressure rise during the process of charging the high-pressure tank in the process of a 82-MPa hydrogen filling system, the final temperature, the amount of filling of hydrogen gas, and the change of pressure of hydrogen through the pressure reducing valve, and the performance of heat exchanger for cooling high-temperature hydrogen were analyzed by theoretical and numerical methods. When high-pressure filling began in the initial vacuum state, the condition was called the “First cycle”. When the high-pressure charging process began in the remaining condition, the process was called the “Second cycle”. As a result of the theoretical analysis, the final temperatures of hydrogen gas were calculated to be 436.09 K for the first cycle of the high-pressure tank, and 403.55 for the second cycle analysis. The internal temperature of the buffer tank increased by 345.69 K and 32.54 K in the first cycle and second cycles after high-pressure filling. In addition, the final masses were calculated to be 11.58 kg and 12.26 kg for the first cycle and second cycle of the high-pressure tank, respectively. The works of the paper can provide suggestions for the temperature rise of 82 MPa compressed hydrogen storage system and offer necessary theory and numerical methods for guiding safe operation and construction of a hydrogen filling system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.