Abstract

A study of natural convective flow, heat transfer and entropy generation in an odd-shaped geometry is presented here. The geometry considered is a combination of the horizontal and vertical enclosure shapes. The cavity is filled with Cu–water nanofluid. The numerical study focuses specifically on the effect of natural convection parameter and solid volume fraction of nanoparticle on the average Nusselt number, total entropy generation and Bejan number. Also isotherms, stream function and entropy generation due to heat transfer are presented for various Rayleigh number and solid volume fraction. The governing equations are solved by using penalty finite element method with Galerkins weighted residual technique. The results reveal that increasing Rayleigh number causes increase of the average Nusselt number as well as the heat transfer term of entropy generation and decrease of the viscous term. The proper choice of Rayleigh number could be able to maximize heat transfer rate simultaneously minimizing entropy generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call