Abstract

Unsteady flows around radial impellers are analyzed by the use of singularity methods. Unsteady torque is given for transient and/or sinusoidal flow rate and/or angular velocity fluctuation. It is shown that the unsteady torque can be divided into three components—quasisteady, apparent mass and wake—and the nature of each component is discussed. As a result of separating the torque into these three components, it is shown that the wake component is usually smaller than the others. A gross estimate of torque fluctuation can be made easily by using the apparent mass coefficient given in the paper for logarithmic impellers covering a wide range of blade angles, blade numbers and impeller diameter ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.