Abstract
BackgroundDNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values.ResultsWe have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions.ConclusionSimulation using the mathematical model, and the experimental study presented here show the potential utility of microarray assays using genomic DNA as a reference. We conclude that the use of genomic DNA as reference DNA should greatly facilitate comparative transcriptome analysis.
Highlights
IntroductionFluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization
DNA microarray is an invaluable tool for gene expression explorations
The mathematical model described above takes into account DNA hybridization between single stranded cDNA and double stranded genomic DNA in solution and immobilized double strands on a microarray surface
Summary
Fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. Genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. In the two-channel DNA microarray assay, RNA from two samples is reverse transcribed to cDNA and labeled with two distinct fluorescent dyes before being co-hybridized to immobilized DNA strands on a microarray slide. The ratio of the intensities of the two fluorescently labeled cDNAs is used to quantify the relative levels of transcripts in the two samples [1,2]. With over ten thousand different DNA species immobilized on the microarray, the relative transcription level of all the corresponding genes in the two samples can be obtained in a single assay
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.