Abstract

This paper provides a method for measuring the long-term trend in the frequency with which ground-level ozone present in the ambient air exceeds the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for ozone. A major weakness of previous studies that estimate the long-term trend in the very high values of ozone, and therefore the long-term trend in the probability of satisfying the NAAQS for ozone, is their failure to account for the confounding effects of meterological conditions on ozone levels. Meteorological variables such as temperature, wind speed, and frontal passage play an important role in the formation of ground-level ozone. A non-homogenous Poisson process is used to account for the relationship between very high values of ozone and meteorological conditions. This model provides an estimate of the trend in the ozone values after allowing for the effects of meteorological conditions. Therefore, this model provides a means to measure the effectiveness of pollution control programs after accounting for the effects of changing weather conditions. When our approach is applied to data collected at two sites in Houston, TX, we find evidence of a gradual long-term downward trend in the frequency of high values of ozone. The empirical results indicate how possibly misleading results can be obtained if the analysis does not account for changing weather conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.