Abstract

We derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial discretization applied to the linear advection equation. We show that the eigenvalues are related to the subdiagonal [p/p+1] Padé approximation of exp(−z) when pth degree basis functions are used. We derive an upper bound on the eigenvalue with the largest magnitude as (p+1)(p+2). We demonstrate that this bound is not tight and prove that the asymptotic growth rate of the spectral radius is slower than quadratic in p. We also analyze the behavior of the spectrum near the imaginary axis to demonstrate that the spectral curves approach the imaginary axis although there are no purely imaginary eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.