Abstract

Abstract Tandem blades have often been under investigation, experimentally as well as numerically, but most of the studies have been about tandem blade stators without tip gap. This work analyzes the influence of a tip gap on the flow field of a tandem blade for engine core compressors. Experiments have been conducted in a high-speed linear compressor cascade on a tandem and a reference geometry. The flow is analyzed using five-hole probe measurements in the wake of the blades and oil flow visualization to show the near surface stream lines. First, the results for design conditions (tandem and conventional blades) are compared to measurements on corresponding blades without a tip gap. Similarities and differences in the flow topology due to the tip clearance are analyzed, showing that the introduction of the tip clearance has a similar influence on the loss and turning development for the tandem and the conventional blades. The tandem blade features two tip clearance vortices with a complex flow interaction and the possible formation of a third counter-rotating vortex between them. An incidence variation from 0 deg to 5 deg for both blades indicates at first a similar behavior. After a separation of the flow field into gap and non-gap half, it becomes apparent that the tandem blade shows higher losses on the gap side, while featuring a close-to-constant behavior on the non-gap side. Further investigation of the flow on the gap side shows indicators of the front blade exhibiting tip clearance vortex break down, while the rear blade seems unaffected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call