Abstract

We have analyzed the phonon dispersion curves in the paraelectric phase of a lead hafnate crystal (PbHfO3) by means of two different lattice-dynamical models. Both the rigid-ion model and the shell one provided an acceptable description of the available experimental data. The atomic displacement patterns were qualitatively different for the two models. In the rigid-ion model the motion in the characteristic low-energy flattened transverse acoustic branch contained both lead and hafnium displacements, while for the shell model it corresponded mainly to lead displacements with the small contribution of oxygen displacements. The shell model allows simultaneous description of the phonon dispersion curves and the correct value of the dielectric constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.