Abstract

The performance of a dual anode-chambered microbial fuel cell (MFC) inoculated with Shewanella oneidesis MR-1 was evaluated. This reactor was constructed by incorporating two anode chambers flanking a shared air cathode chamber in an electrically parallel, geometrically stacked arrangement. The device was shown to have the same maximum power density (approximately 24 W m −3, normalized by the anode volume) as a single anode-, single cathode-chambered MFC. The dual anode-chambered unit generated a maximum current of 3.66 mA (at 50 Ω), twice the value of 1.69 mA (at 100 Ω) for the single anode-chambered device at approximately the same volumetric current density. Increasing the Pt-coated cathode surface area by 100% (12 to 24 cm 2) had no significant effect on the power generation of the dual anode-chambered MFC, indicating that the performance of the device was limited by the anode. The medium recirculation rate and substrate concentration in the anode were varied to determine their effect on the anode-limited power density. At the highest recirculation rate, 5 ml min −1, the power density was about 25% higher than at the lowest recirculation rate, 1 ml min −1. The dependence of the power density on the lactate concentration showed saturation kinetics with a half-saturation constant K s on the order of 4.4 mM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.