Abstract

The matching hypothesis in social psychology claims that people are more likely to form a committed relationship with someone equally attractive. Previous works on stochastic models of human mate choice process indicate that patterns supporting the matching hypothesis could occur even when similarity is not the primary consideration in seeking partners. Yet, most if not all of these works concentrate on fully-connected systems. Here we extend the analysis to networks. Our results indicate that the correlation of the couple’s attractiveness grows monotonically with the increased average degree and decreased degree diversity of the network. This correlation is lower in sparse networks than in fully-connected systems, because in the former less attractive individuals who find partners are likely to be coupled with ones who are more attractive than them. The chance of failing to be matched decreases exponentially with both the attractiveness and the degree. The matching hypothesis may not hold when the degree-attractiveness correlation is present, which can give rise to negative attractiveness correlation. Finally, we find that the ratio between the number of matched couples and the size of the maximum matching varies non-monotonically with the average degree of the network. Our results reveal the role of network topology in the process of human mate choice and bring insights into future investigations of different matching processes in networks.

Highlights

  • The process of pairing and matching between members of two disjoint groups is ubiquitous in our society

  • We focus on attractiveness and popularity that are essential in this process, this model could be the simplest to study the interplay between these two factors, shedding light on the effect of topology on this process

  • To study the effects of topology, we focus on three most commonly used network structures with different degree distributions. 1) random k-regular graph (RRG) whose degree distribution follows a delta function P(k) = δ(k−hki), where hki is the average degree of the network, corresponding to an extreme case that each person knows exactly the same number of others; 2) Erdős-Rényi network (ER) with a Poisson degree distribution P(k) = e−hkihkik/k!, representing the situation that most nodes have similar number of neighbors and nodes with very high or low degrees are rare [31]; 3) scale-free network (SF) generated via static model whose degree distribution has a fat-tail P(k) * k−γ, featuring a large number of low degree nodes and few high degree hubs [32, 33]

Read more

Summary

Introduction

The process of pairing and matching between members of two disjoint groups is ubiquitous in our society. The underlying mechanism can be purely random, but in general decisions on selections are guided by rational choices, such as the relationship between advisor and advisee, the employment between employer and employee and the marriage between heterosexual male and female individuals. In many of these cases, similarities between the two paired parties are widely observed, such as similar research interests between the advisor and advisee and matched market competitiveness between the executives and the company. The principle of PLOS ONE | DOI:10.1371/journal.pone.0129804 June 17, 2015

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.