Abstract

Abstract This paper presents the results of an experimental analysis of the influence of high-frequency injected ripple currents on the Dynamic Charge Acceptance (DCA) performance of lead-acid batteries. A wide-bandwidth battery model, derived from real-world data is described, this being a hybrid of the standard Randles model and a high-frequency model previously presented in literature. A bespoke test procedure is introduced, based on the existing DCA Short Test profile (EN50342-6). The results demonstrate that the injection of ripple currents can significantly improve charge acceptance, whilst having no appreciable effect on the State of Charge (SoC) of the battery. This study further demonstrates the importance of knowledge of the impedance spectrum of the battery if the improvements in DCA performance are to be achieved with maximum efficiency and effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.