Abstract

The effect of superposed hydrostatic pressure on the tensile deformation of particle-reinforced Al-matrix composites was analyzed using a self-consistent approximation. The composite was represented in terms of an interpenetrating network of randomly distributed spheres, which stand for the intact and damaged regions in the composite. Each sphere contained an intact or broken ceramic particle at the center, and the model assumed that the fraction of damaged spheres increased during deformation. The load partitioning between intact and damaged regions in the composite as well as the stress redistribution due to damage was computed through a self-consistent scheme. It was shown that the tensile stresses in the ceramic particles, and thus the fraction of broken particles, were reduced as the hydrostatic pressure increased. This led to a moderate improvement in the composite flow stress but more significant gains were achieved in the strain at the onset of plastic instability. Both magnitudes increased with the hydrostatic pressure until a saturation stress was reached. Particle fracture was completely inhibited at this point, and higher pressures did not have any influence on the composite behavior, which was equivalent to that of the undamaged phase in the absence of hydrostatic pressure. Using reasonable values for the matrix and reinforcement properties, the model predictions for the composite strength and strain at the onset of plastic instability were in good agreement with the experimental data in the literature for high strength Al alloys reinforced with SiC and Al 2O 3 particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.