Abstract

The Barzilai and Borwein gradient method does not ensure descent in the objective function at each iteration, but performs better than the classical steepest descent method in practical computations. Combined with the technique of nonmonotone line search etc., such a method has found successful applications in unconstrained optimization, convex constrained optimization and stochastic optimization. In this paper, we give an analysis of the Barzilai and Borwein gradient method for two unsymmetric linear equations with only two variables. Under mild conditions, we prove that the convergence rate of the Barzilai and Borwein gradient method is Q-superlinear if the coefficient matrix A has the same eigenvalue; if the eigenvalues of A are different, then the convergence rate is R-superlinear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.